Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Mol Biol Rep ; 50(5): 4645-4652, 2023 May.
Article in English | MEDLINE | ID: covidwho-2263419

ABSTRACT

Members of the Numb-associated kinase family of serine/threonine kinases play an essential role in many cellular processes, such as endocytosis, autophagy, dendrite morphogenesis, osteoblast differentiation, and the regulation of the Notch pathway. Numb-associated kinases have been relevant to diverse diseases, including neuropathic pain, Parkinson's disease, and prostate cancer. Therefore, they are considered potential therapeutic targets. In addition, it is reported that Numb-associated kinases have been involved in the life cycle of multiple viruses such as hepatitis C virus (HCV), Ebola virus (EBOV), and dengue virus (DENV). Recently, Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to threaten global health. Studies show that Numb-associated kinases are implicated in the infection of SARS-CoV-2 which can be suppressed by Numb-associated kinases inhibitors. Thus, Numb-associated kinases are proposed as potential host targets for broad-spectrum antiviral strategies. We will focus on the recent advances in Numb-associated kinases-related cellular functions and their potential as host targets for viral infections in this review. Questions that remained unknown on the cellular functions of Numb-associated kinases will also be discussed.


Subject(s)
COVID-19 , Hepatitis C , Male , Humans , SARS-CoV-2/metabolism , Protein Serine-Threonine Kinases/metabolism , Endocytosis , Antiviral Agents , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism
2.
Chem Biol Drug Des ; 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2242737

ABSTRACT

The coronavirus pandemic known as COVID-19 caused by severe acute respiratory syndrome coronavirus 2, threatens public health worldwide. Approval of COVID-19 vaccines and antiviral drugs have greatly reduced the severe cases and mortality rate. However, the continuous mutations of viruses are challenging the efficacies of vaccines and antiviral drugs. A drug repurposing campaign has identified two JAK1/2 inhibitors ruxolitinib and baricitinib as potential antiviral drugs. Ruxolitinib and baricitinib exert dual antiviral effect by modulation of inflammatory response via JAK1/2 and inhibition of viral entry via AAK1 and GAK. Inspired by this, in an effort to diversify chemical space, three analogues ((R)-8, (S)-8, and 9) of ruxolitinib and baricitinb were made using a scaffold hopping strategy. Compound 9 displayed potent and comparable potencies against AAK1, JAK1, and JAK2 compared to baricitinib. Notably, compound 9 showed better selectivity for AAK1, JAK1, and JAK2 over GAK. Besides, compound 9 displayed good druglikeness according to Lipinski's and Veber's rule. We thereby identified a potential lead compound 9, which might be used for the further development of anti-coronaviral therapy.

3.
Metabol Open ; 11: 100103, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1294065

ABSTRACT

In December 2019, a highly transmissible, pneumonia epidemic caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), erupted in China and other countries, resulting in devastation and health crisis worldwide currently. The search and using existing drugs support to curb the current highly contagious viral infection is spirally increasing since the pandemic began. This is based on these drugs had against other related RNA-viruses such as MERS-Cov, and SARS-Cov. Moreover, researchers are scrambling to identify novel drug targets and discover novel therapeutic options to vanquish the current pandemic. Since there is no definitive treatment to control Covid-19 vaccines are remain to be a lifeline. Currently, many vaccine candidates are being developed with most of them are reported to have positive results. Therapeutic targets such as helicases, transmembrane serine protease 2, cathepsin L, cyclin G-associated kinase, adaptor-associated kinase 1, two-pore channel, viral virulence factors, 3-chymotrypsin-like protease, suppression of excessive inflammatory response, inhibition of viral membrane, nucleocapsid, envelope, and accessory proteins, and inhibition of endocytosis were identified as a potential target against COVID-19 infection. This review also summarizes plant-based medicines for the treatment of COVID-19 such as saposhnikoviae divaricata, lonicerae japonicae flos, scutellaria baicalensis, lonicera japonicae, and some others. Thus, this review aimed to focus on the most promising therapeutic targets being repurposed against COVID-19 and viral elements that are used in COVID-19 vaccine candidates.

SELECTION OF CITATIONS
SEARCH DETAIL